Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solution: We target the bonus point. The only tricky part is to use temporary variables.
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { int nRows = triangle.size(); if (nRows == 0) return 0; int[] sum = new int[nRows]; Arrays.fill(sum, 0); sum[0] = triangle.get(0).get(0); for (int i = 1; i < nRows; i++) { int tmp = sum[0]; sum[0] += triangle.get(i).get(0); for (int j = 1; j < i; j++) { int tmp_tmp = sum[j]; sum[j] = triangle.get(i).get(j) + Math.min(tmp, sum[j]); tmp = tmp_tmp; } sum[i] = triangle.get(i).get(i) + tmp; } Arrays.sort(sum); return sum[0]; } }
No comments:
Post a Comment